ich stecke aktuell ziemlich in der Klemme mit der Präsentation meiner Ergebnisse meiner moderierten Mediation in meiner Masterthesis. Ich habe diese mit PROCESS v3 von Hayes in SPSS gerechnet (Model 59, hier der Link zu den Modellen: https://www.researchgate.net/profile/Lu ... plates.pdf).
Hierbei habe ich 5 X Variablen (Big Five Inventory mit 5 Subskalen) und zwei Moderatoren (alo_vt und ftf_vt), sowie eine Outcome Variable (WEIMS). Nach Hayes habe ich das Model 5 mal gerechnet, jeweils mit einer der Subskalen als X und den verbleibenden 4 als Covariate.
Ich habe als Beispiel den Code für eines dieser 5 Modelle (X = Extraversion) am Ende des Posts kopiert. Diesen Output habe ich weitere 4 mal, jeweils mit einer anderen Subskala als X.
Meine Frage bezieht sich jetzt nicht auf die Interpretation der Ergebnisse, die verstehe ich. Allerdings stecke ich aktuell damit fest, wie ich diese Ergebnisse präsentieren kann und welche ich präsentieren soll. Gibt es eine Möglichkeit die Ergebnisse der Mediation und Moderation aller Variablen der 5 Modelle zusammenfassend in einer Tabelle darzustellen?
Ich beiße mir mittlerweile seit zwei Tagen die Zähne daran aus die Ergebnisse in einer anständigen Form zu präsentieren, aber komme einfach nicht zu einer zufriedenstellenden Lösung.
Ich wäre super dankbar über jede Hilfe!
Code: Alles auswählen
**************** PROCESS Procedure for SPSS Version 3.00 *****************
Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2018). www.guilford.com/p/hayes3
**************************************************************************
Model : 59
Y : WEIMS
X : bfi_e
M1 : alo_vt
M2 : ftf_vt
W : perccom
Covariates:
bfi_c bfi_n bfi_o bfi_a
Sample
Size: 172
**************************************************************************
OUTCOME VARIABLE:
alo_vt
Model Summary
R R-sq MSE F df1 df2 p
,2740 ,0751 1,5548 1,9020 7,0000 164,0000 ,0723
Model
coeff se t p LLCI ULCI
constant 1,2682 ,9922 1,2782 ,2030 -,6909 3,2273
bfi_e ,2159 ,1395 1,5477 ,1236 -,0595 ,4913
perccom ,0026 ,0037 ,7097 ,4789 -,0047 ,0099
Int_1 -,0021 ,0045 -,4517 ,6521 -,0110 ,0069
bfi_c -,1043 ,1622 -,6428 ,5213 -,4246 ,2160
bfi_n -,3338 ,1536 -2,1723 ,0313 -,6371 -,0304
bfi_o ,1068 ,1721 ,6205 ,5358 -,2330 ,4466
bfi_a -,0807 ,1847 -,4367 ,6629 -,4454 ,2840
Product terms key:
Int_1 : bfi_e x perccom
Covariance matrix of regression parameter estimates:
constant bfi_e perccom Int_1 bfi_c bfi_n bfi_o bfi_a
constant ,9844 -,0020 ,0002 -,0004 -,0669 -,0735 -,0635 -,0771
bfi_e -,0020 ,0195 ,0001 ,0000 ,0010 ,0095 -,0067 -,0014
perccom ,0002 ,0001 ,0000 ,0000 ,0000 ,0000 ,0000 ,0000
Int_1 -,0004 ,0000 ,0000 ,0000 ,0000 ,0001 ,0000 ,0001
bfi_c -,0669 ,0010 ,0000 ,0000 ,0263 ,0046 -,0016 -,0111
bfi_n -,0735 ,0095 ,0000 ,0001 ,0046 ,0236 -,0059 ,0026
bfi_o -,0635 -,0067 ,0000 ,0000 -,0016 -,0059 ,0296 -,0046
bfi_a -,0771 -,0014 ,0000 ,0001 -,0111 ,0026 -,0046 ,0341
Test(s) of highest order unconditional interaction(s):
R2-chng F df1 df2 p
X*W ,0012 ,2040 1,0000 164,0000 ,6521
**************************************************************************
OUTCOME VARIABLE:
ftf_vt
Model Summary
R R-sq MSE F df1 df2 p
,3611 ,1304 1,2310 3,5129 7,0000 164,0000 ,0015
Model
coeff se t p LLCI ULCI
constant ,5676 ,8828 ,6429 ,5212 -1,1756 2,3108
bfi_e -,1164 ,1241 -,9375 ,3499 -,3614 ,1287
perccom ,0063 ,0033 1,9263 ,0558 -,0002 ,0128
Int_1 -,0024 ,0040 -,5844 ,5597 -,0104 ,0056
bfi_c ,3921 ,1443 2,7163 ,0073 ,1071 ,6771
bfi_n -,3846 ,1367 -2,8129 ,0055 -,6545 -,1146
bfi_o ,0257 ,1531 ,1676 ,8671 -,2767 ,3281
bfi_a -,2868 ,1643 -1,7450 ,0829 -,6113 ,0377
Product terms key:
Int_1 : bfi_e x perccom
Covariance matrix of regression parameter estimates:
constant bfi_e perccom Int_1 bfi_c bfi_n bfi_o bfi_a
constant ,7794 -,0016 ,0002 -,0003 -,0530 -,0582 -,0503 -,0610
bfi_e -,0016 ,0154 ,0001 ,0000 ,0008 ,0075 -,0053 -,0011
perccom ,0002 ,0001 ,0000 ,0000 ,0000 ,0000 ,0000 ,0000
Int_1 -,0003 ,0000 ,0000 ,0000 ,0000 ,0001 ,0000 ,0000
bfi_c -,0530 ,0008 ,0000 ,0000 ,0208 ,0037 -,0012 -,0088
bfi_n -,0582 ,0075 ,0000 ,0001 ,0037 ,0187 -,0047 ,0021
bfi_o -,0503 -,0053 ,0000 ,0000 -,0012 -,0047 ,0235 -,0036
bfi_a -,0610 -,0011 ,0000 ,0000 -,0088 ,0021 -,0036 ,0270
Test(s) of highest order unconditional interaction(s):
R2-chng F df1 df2 p
X*W ,0018 ,3415 1,0000 164,0000 ,5597
**************************************************************************
OUTCOME VARIABLE:
WEIMS
Model Summary
R R-sq MSE F df1 df2 p
,5342 ,2854 420,7095 5,8087 11,0000 160,0000 ,0000
Model
coeff se t p LLCI ULCI
constant -76,8197 16,4691 -4,6645 ,0000 -109,3446 -44,2947
bfi_e 5,0179 2,3355 2,1486 ,0332 ,4056 9,6303
alo_vt 3,2351 1,4298 2,2627 ,0250 ,4115 6,0587
ftf_vt -1,2641 1,6886 -,7486 ,4552 -4,5989 2,0707
perccom ,0276 ,0617 ,4474 ,6552 -,0943 ,1495
Int_1 -,0552 ,0794 -,6952 ,4879 -,2120 ,1016
Int_2 ,0165 ,0565 ,2921 ,7706 -,0952 ,1282
Int_3 -,0326 ,0679 -,4811 ,6311 -,1667 ,1014
bfi_c 2,5470 2,7621 ,9221 ,3579 -2,9079 8,0020
bfi_n 1,7054 2,6008 ,6557 ,5130 -3,4310 6,8418
bfi_o 8,2483 2,8433 2,9009 ,0042 2,6330 13,8635
bfi_a 12,3085 3,0989 3,9719 ,0001 6,1885 18,4285
Product terms key:
Int_1 : bfi_e x perccom
Int_2 : alo_vt x perccom
Int_3 : ftf_vt x perccom
Covariance matrix of regression parameter estimates:
constant bfi_e alo_vt ftf_vt perccom Int_1 Int_2 Int_3 bfi_c bfi_n bfi_o
constant 271,2320 ,0559 -2,3573 ,2154 ,0692 -,1377 ,0778 -,0693 -18,1018 -20,7759 -17,1255
bfi_e ,0559 5,4545 -,5678 ,5109 ,0218 -,0098 ,0077 -,0043 ,0181 2,5594 -1,7965
alo_vt -2,3573 -,5678 2,0442 -,9507 ,0005 ,0081 -,0144 ,0079 ,5555 ,3383 -,1474
ftf_vt ,2154 ,5109 -,9507 2,8513 -,0170 ,0057 ,0071 -,0396 -,9733 ,6940 ,0939
perccom ,0692 ,0218 ,0005 -,0170 ,0038 -,0002 ,0000 ,0004 -,0061 ,0048 -,0091
Int_1 -,1377 -,0098 ,0081 ,0057 -,0002 ,0063 -,0014 ,0001 -,0081 ,0303 ,0116
Int_2 ,0778 ,0077 -,0144 ,0071 ,0000 -,0014 ,0032 -,0015 ,0006 -,0062 -,0097
Int_3 -,0693 -,0043 ,0079 -,0396 ,0004 ,0001 -,0015 ,0046 -,0110 -,0025 -,0045
bfi_c -18,1018 ,0181 ,5555 -,9733 -,0061 -,0081 ,0006 -,0110 7,6295 1,0373 -,4303
bfi_n -20,7759 2,5594 ,3383 ,6940 ,0048 ,0303 -,0062 -,0025 1,0373 6,7643 -1,6149
bfi_o -17,1255 -1,7965 -,1474 ,0939 -,0091 ,0116 -,0097 -,0045 -,4303 -1,6149 8,0844
bfi_a -21,5083 -,2929 -,0574 ,3820 -,0080 ,0163 -,0075 ,0299 -3,3334 ,9070 -1,2876
Test(s) of highest order unconditional interaction(s):
R2-chng F df1 df2 p
X*W ,0022 ,4834 1,0000 160,0000 ,4879
M1*W ,0004 ,0853 1,0000 160,0000 ,7706
M2*W ,0010 ,2314 1,0000 160,0000 ,6311
****************** DIRECT AND INDIRECT EFFECTS OF X ON Y *****************
Conditional direct effect(s) of X on Y:
perccom Effect se t p LLCI ULCI
-33,1395 6,8472 3,6095 1,8970 ,0596 -,2813 13,9756
6,8605 4,6393 2,3699 1,9576 ,0520 -,0411 9,3196
26,8605 3,5353 3,0781 1,1485 ,2525 -2,5436 9,6142
Conditional indirect effects of X on Y:
INDIRECT EFFECT:
bfi_e -> alo_vt -> WEIMS
perccom Effect BootSE BootLLCI BootULCI
-33,1395 ,7632 ,9945 -,6867 3,2447
6,8605 ,6756 ,6592 -,4651 2,1719
26,8605 ,5911 ,9843 -1,3994 2,7233
---
INDIRECT EFFECT:
bfi_e -> ftf_vt -> WEIMS
perccom Effect BootSE BootLLCI BootULCI
-33,1395 ,0069 ,5005 -,7777 1,3485
6,8605 ,1973 ,4121 -,2967 1,3375
26,8605 ,3852 ,8041 -,5527 2,6097
---
*********************** ANALYSIS NOTES AND ERRORS ************************
Level of confidence for all confidence intervals in output:
95,0000
Number of bootstrap samples for percentile bootstrap confidence intervals:
10000
W values in conditional tables are the 16th, 50th, and 84th percentiles.
NOTE: The following variables were mean centered prior to analysis:
perccom bfi_e alo_vt ftf_vt
------ END MATRIX -----