Testwahl (2 Gruppen + Vorher-Nachher-Vergleich)

Fragen und Diskussionen rund um die Arbeit mit SPSS. Für allgemeine Statistik-Themen, die nicht mit SPSS zusammenhängen, bitte das Statistik-Forum nutzen.
Antworten
amega
Beiträge: 2
Registriert: 19.04.2012, 21:32

Testwahl (2 Gruppen + Vorher-Nachher-Vergleich)

Beitrag von amega »

Hallo,

ich als SPSS-Neuling möchte einen Vergleichstest zwischen zwei Gruppen anhand von zwei Variablen (eine Vorher- und eine Nachhervariable) durchführen. Ich möchte wissen, ob die Entwicklung zwischen diesen beiden Variablen im Zusammenhang mit der Gruppe (unterschiedliche Treatments) steht.
Beide Gruppen haben einen 'nahezu identischen' Fragebogen bekommen, somit habe ich auch alle Fälle in einen Gesamtdatensatz geschrieben. Eine Var1 = Gruppe, Var2 = vorher, Var3 = nachher
Für Var1 gibt es nur die Werte 1 und 2, für Var2 und Var3 gibt es Wertelabels zwischen 1 und 4 (1 ist besser).
n ist mit 13 (Gruppe 1) und 12 (Gruppe 2) relativ gering.
Kann ich hier schon von einer Normalverteilung ausgehen?

Ich bin mir noch nicht sicher, welcher der richtige Test ist, bzw. vielleicht ist eine Kombination mehrerer Tests sinnvoll?!
Ich dachte an:
* T-Test für abhängige Stichproben (da ein Vorher- Nachhervergleich vorgenommen wird)
* T-Test für unabhängige Stichproben (da zwei Gruppen mit untersch. Treatments vorliegen)
* vorher F-Test?, darauf bringt mich die Zusammenfassung hier. Die dortige Untersuchung ist meinem Vorhaben sehr ähnlich.
* vielleicht eignet sich auch ein Chi²-Test?
* dann habe ich irgendwo noch etwas über eine Alternative zum t-Test gelesen, nur leider ist mir dessen Bezeichnung entfallen

Ich würde mich sehr freuen, wenn ihr Tipps zur sinnvollen Testauswahl geben könntet, bzw. wenn ihr sogar dazu schreiben könntet, was bei der entsprechenden Auswertung besonders zu beachten ist.

Vielen Dank!
Generalist
Beiträge: 1733
Registriert: 11.03.2010, 22:28

Re: Testwahl (2 Gruppen + Vorher-Nachher-Vergleich)

Beitrag von Generalist »

Für Var1 gibt es nur die Werte 1 und 2, für Var2 und Var3 gibt es Wertelabels zwischen 1 und 4 (1 ist besser).
n ist mit 13 (Gruppe 1) und 12 (Gruppe 2) relativ gering.
Kann ich hier schon von einer Normalverteilung ausgehen?
Nein. Die ist aber auch vermutlich nicht von Interesse.
Ich bin mir noch nicht sicher, welcher der richtige Test ist, bzw. vielleicht ist eine Kombination mehrerer Tests sinnvoll?!
Ich dachte an:
* T-Test für abhängige Stichproben (da ein Vorher- Nachhervergleich vorgenommen wird)
Deiner Messung ist mit ziemlicher Sicherheit eine ordinalskalierte, da
geht der t-Test nicht. Ferner geht aus Deiner Fragestellung nicht
hervor, dass Du einen schlichten vorher-nachher Vergleich rechnen
willst (falls aber doch: Wilcoxon Rangsummentest; für Gruppenvergleiche
zu einem Messzeitpunkt: U-Test).

Normalerweise bearbeitet man so ein Design mit einer Messwiederholungs-
Varianzanalyse, aber die ist für Ordinaldaten ungeeignet. Die einfachste
Vorgehensweise wäre, für jeden der 25 Fälle zu ermitteln, ob von Messung 1
zu Messung 2 eine Verbesserung, Verschlechterung oder ein gleichbleibender
Wert vorliegt. Die Gruppen könnte man dann mit einem Chi² hinsichtlich dieser
neuen Variable vergleichen.
amega
Beiträge: 2
Registriert: 19.04.2012, 21:32

Beitrag von amega »

In dem Fragebogen - ausgeteilt zum Zeitpunkt y - geht es um eine Selbstbewertung hinsichtlich des eigenen Könnens....

1. zum Zeitpunkt x (Vorher)
2. zum Zeitpunkt y (Nachher, bzw. jetzt)

Im Anschluss an x wird die Gesamtgruppe zweigeteilt (n 12 und n 13), wobei eine mit einem Treatment versorgt wird, die andere nicht.

Da die Antwortmöglichkeiten "stimmt", "stimmt eher", "eher nicht" und "stimmt nicht" sind, gehe ich von einer Ordinalskala aus. Allerdings sind die Werte durch die Antwortmöglichkeiten gleichweit voneinander entfernt (wenn man bei textbasierten Antwortmöglichkeiten überhaupt davon sprechen kann), wodurch sie skalentypische Eigenschaften haben sollten?!

Es gibt also einen Vorher-Nachhervergleich und außerdem zwei Gruppen.
Anzeige:Statistik und SPSS: Die besten Bücher
Als Buch oder E-Book - Jetzt bestellen
spss datenanalyse
SPSS - Moderne Datenanalyse - Jetzt bestellen!
statistik datenanalyse
Statistik - Der Weg zur Datenanalyse - Jetzt bestellen!
Antworten